4,005 research outputs found

    Spontaneous rotating vortex lattices in a pumped decaying condensate

    Full text link
    Injection and decay of particles in an inhomogeneous quantum condensate can significantly change its behaviour. We model trapped, pumped, decaying condensates by a complex Gross-Pitaevskii equation and analyse the density and currents in the steady state. With homogeneous pumping, rotationally symmetric solutions are unstable. Stability may be restored by a finite pumping spot. However if the pumping spot is larger than the Thomas-Fermi cloud radius, then rotationally symmetric solutions are replaced by solutions with spontaneous arrays of vortices. These vortex arrays arise without any rotation of the trap, spontaneously breaking rotational symmetry.Comment: Updated title and introduction. 4 pages, 3 figure

    Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer

    Get PDF
    A methodology has been developed for making continuous, high-precision measurements of atmospheric oxygen concentrations by modifying a commercially available paramagnetic oxygen analyzer. Incorporating several design improvements, an effective precision of 0.2 ppm O-2 from repeated measurements over a 1-hour interval was achieved. This is sufficient to detect background changes in atmospheric O-2 to a level that constrains various aspects of the global carbon cycle. The analyzer was used to measure atmospheric O-2 in a semicontinuous fashion from air sampled from the end of Scripps Pier, La Jolla, California, and data from a 1-week period in August 1996 are shown. The data exhibit strongly anticorrelated changes in O-2 and CO2 caused by local or regional combustion of fossil fuels. During periods of steady background CO2 concentrations, however, we see additional variability in O-2 concentrations, clearly not due to local combustion and presumably due to oceanic sources or sinks of O-2. This variability suggests that in contrast to CO2, higher O-2 sampling rates, such as those provided by continuous measurement programs, may be necessary to define an atmospheric O-2 background and thus aid in validating and interpreting other O-2 data from flask sampling programs. Our results have also demonstrated that this paramagnetic analyzer and gas handling design is well suited for making continuous measurements of atmospheric O-2 and is suitable for placement at remote background air monitoring sites

    Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models

    Get PDF
    Measurements of atmospheric O2/N2 ratios and CO2 concentrations can be combined into a tracer known as atmospheric potential oxygen (APO ≈ O2/N2 + CO2) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. (1998), we present a set of APO observations for the years 1996-2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. (2001), we compare these observations with predictions of APO generated from ocean O2 and CO2 flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere. Copyright 2006 by the American Geophysical Union

    Absorption, Photoluminescence and Resonant Rayleigh Scattering Probes of Condensed Microcavity Polaritons

    Full text link
    We investigate and compare different optical probes of a condensed state of microcavity polaritons in expected experimental conditions of non-resonant pumping. We show that the energy- and momentum-resolved resonant Rayleigh signal provide a distinctive probe of condensation as compared to, e.g., photoluminescence emission. In particular, the presence of a collective sound mode both above and below the chemical potential can be observed, as well as features directly related to the density of states of particle-hole like excitations. Both resonant Rayleigh response and the absorption and photoluminescence, are affected by the presence of quantum well disorder, which introduces a distribution of oscillator strengths between quantum well excitons at a given energy and cavity photons at a given momentum. As we show, this distribution makes it important that in the condensed regime, scattering by disorder is taken into account to all orders. We show that, in the low density linear limit, this approach correctly describes inhomogeneous broadening of polaritons. In addition, in this limit, we extract a linear blue-shift of the lower polariton versus density, with a coefficient determined by temperature and by a characteristic disorder length.Comment: 16 pages, 11 figures; minor correction

    Appropriate models for the management of infectious diseases

    Get PDF
    Background Mathematical models have become invaluable management tools for epidemiologists, both shedding light on the mechanisms underlying observed dynamics as well as making quantitative predictions on the effectiveness of different control measures. Here, we explain how substantial biases are introduced by two important, yet largely ignored, assumptions at the core of the vast majority of such models. Methods and Findings First, we use analytical methods to show that (i) ignoring the latent period or (ii) making the common assumption of exponentially distributed latent and infectious periods (when including the latent period) always results in underestimating the basic reproductive ratio of an infection from outbreak data. We then proceed to illustrate these points by fitting epidemic models to data from an influenza outbreak. Finally, we document how such unrealistic a priori assumptions concerning model structure give rise to systematically overoptimistic predictions on the outcome of potential management options. Conclusion This work aims to highlight that, when developing models for public health use, we need to pay careful attention to the intrinsic assumptions embedded within classical frameworks

    Polariton condensation with localised excitons and propagating photons

    Get PDF
    We estimate the condensation temperature for microcavity polaritons, allowing for their internal structure. We consider polaritons formed from localised excitons in a planar microcavity, using a generalised Dicke model. At low densities, we find a condensation temperature T_c \propto \rho, as expected for a gas of structureless polaritons. However, as T_c becomes of the order of the Rabi splitting, the structure of the polaritons becomes relevant, and the condensation temperature is that of a B.C.S.-like mean field theory. We also calculate the excitation spectrum, which is related to observable quantities such as the luminescence and absorption spectra.Comment: 5 pages, 4 figures, Corrected typos, replaced figure

    Non-equilibrium quantum condensation in an incoherently pumped dissipative system

    Get PDF
    We study spontaneous quantum coherence in an out of equilibrium system, coupled to multiple baths describing pumping and decay. For a range of parameters describing coupling to, and occupation of the baths, a stable steady-state condensed solution exists. The presence of pumping and decay significantly modifies the spectra of phase fluctuations, leading to correlation functions that differ both from an isolated condensate and from a laser.Comment: 5 pages, 2 eps figure

    A motif-based approach to network epidemics

    Get PDF
    Networks have become an indispensable tool in modelling infectious diseases, with the structure of epidemiologically relevant contacts known to affect both the dynamics of the infection process and the efficacy of intervention strategies. One of the key reasons for this is the presence of clustering in contact networks, which is typically analysed in terms of prevalence of triangles in the network. We present a more general approach, based on the prevalence of different four-motifs, in the context of ODE approximations to network dynamics. This is shown to outperform existing models for a range of small world networks

    Thermodynamics and Excitations of Condensed Polaritons in Disordered Microcavities

    Get PDF
    We study the thermodynamic condensation of microcavity polaritons using a realistic model of disorder in semiconductor quantum wells. This approach correctly describes the polariton inhomogeneous broadening in the low density limit, and treats scattering by disorder to all orders in the condensed regime. While the weak disorder changes the thermodynamic properties of the transition little, the effects of disorder in the condensed state are prominent in the excitations and can be seen in resonant Rayleigh scattering.Comment: 5 pages, 3 eps figures (published version

    Networks and the epidemiology of infectious disease

    Get PDF
    The science of networks has revolutionised research into the dynamics of interacting elements. It could be argued that epidemiology in particular has embraced the potential of network theory more than any other discipline. Here we review the growing body of research concerning the spread of infectious diseases on networks, focusing on the interplay between network theory and epidemiology. The review is split into four main sections, which examine: the types of network relevant to epidemiology; the multitude of ways these networks can be characterised; the statistical methods that can be applied to infer the epidemiological parameters on a realised network; and finally simulation and analytical methods to determine epidemic dynamics on a given network. Given the breadth of areas covered and the ever-expanding number of publications, a comprehensive review of all work is impossible. Instead, we provide a personalised overview into the areas of network epidemiology that have seen the greatest progress in recent years or have the greatest potential to provide novel insights. As such, considerable importance is placed on analytical approaches and statistical methods which are both rapidly expanding fields. Throughout this review we restrict our attention to epidemiological issues
    corecore